IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 7, JULY 1985

can be identified as the contribution of the nth aperture to the
field at (p, ¢). We can say that the array of N horn apertures is
focused to the point (p, ¢) when the phase of each contribution

E, , is identical. An equivalent statement is that

+00
8, =—phaseof 3} fV,L(np)e " . (30)
m=-—-
The choice of the amplitude factor A, is still open. The coeffi-
cient f,, is defined by (18) and involves the electrical properties

of the target and the concentric buffer region. In the case where
the latter is absent or vanishing small (i.e., b — a), we see that

fm=[Im(Yla)]_l' (31)
The other key coefficient in (30) is ¥, which depends on the
common field distribution in a given aperture. Assuming that the
horns are excited only by a TEM (transverse electromagnetic)
mode, it is reasonable to assume a cosinusoidal field distribution
at the aperture which vanishes at the side walls. Thus, we may
adopt the form

£, ($) = By-cos( 32 (3)
for the range — % <é< -]% Then, using (27), we see that
= /N N_&’ im$ 17
V. bEOf_ ”Ncos( 2 )e d¢
= bE, cos( m%) —+——
(N/2)"—m?
=bEym/N  form=N/2. (33)

All quantities on the right-hand side of (30) are now specified,
and the phase factors &, may be calculated for any desired point
(p,$). We are still free to select the amplitude factors A, if
additional constraints are made.
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There are a number of generalizations and extensions of the
present model that we might mention. The case where the target
(defined by p < a in Fig. 1) is concentrically layered presents no
difficulty in analysis. Here, we can use the present formulation
provided Y; ,, (the surface admittance) of mode of order m at
p=a is replaced by the appropriate form for the equivalent
nonuniform transmission line [8]. Another extension is to allow
explicity for the limited axial extent (in the z-direction) of the
apertures and to include the axial variation of the fields [8],[10].
Now we must allow for the intrinsic hybrid nature of the fields
because the TE (transverse electric) and TM (transverse mag-
netic) modes are coupled [8]. At the same time, both the axial and
the azimuthal (ie, z and ¢, respectively) variations of the
aperture fields can be accounted for. In a further extension, we
can consider the influence of the finite length of the cylindrical
target by imposing a zero axial current flow condition at the
bounding planes (top and bottom) [11].

There is another interesting concept that we might also men-
tion in the present context. In order to “focus” the array, we

FINAL REMARKS

adopted a procedure whereby the fields of the individual aper- -

tures were selected to have a phase such that all contributions at
the internal field point were additive. Now we could have turned
the problem around and started with a hypothetic electric line
source at the internal point and deduce the corresponding re-
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ceived signal in each aperture. This would lead to an alternative
but equivalent procedure to deduce the phase angles 8, needed to
design the focused aperture. This latter approach could be adapted
to more complicated target geometries where purely numerical
methods would be required to solve the electromagnetic problem.
However, in the interim, it would seem prudent to restrict atten-
tion to analytically viable models if insight and understanding are
desired. We are currently undertaking such a study and the
results will be reported in Part II.
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Convergence of Local and Average Values in
Three-Dimensional Moment-Method Solutions

MARK J. HAGMANN, MEMBER, IEEE, AND RONALD L. LEVIN

Abstract —Block models using 8, 64, 216, 512, 1000, 1728, and 2744
cubical cells were used to evaluate the local and average specific absorption
rate (SAR) for a dielectric cube irradiated by an EM plane wave. All seven
models were used in examples for 0.5-cm and 2.5-cm saline cubes at 400
MHz and a 30-cm cube of biological tissue at 27.12 MHz. In each
example, the solutions using 8 or 64 cells were similar to that for a sphere
rather than a cube. Many cells are needed to approximate the sharp
variation of the electric field near corners and edges of a dielectric cube.

The heterogeneity of the electric field in an object having corners and
edges causes a frequency-independent error (FIE) in addition to the more
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generally observed frequency-dependent error (FDE) associated with the
electrical size of the object. FIE causes the average SAR to converge less
rapidly than local values of SAR at locations distant from the corners and
edges. An extrapolant is described that corrects for FDE but not FIE in
order to estimate the volume average SAR.

I. INTRODUCTION

Numerical solutions obtained using block models have had
many applications including the evaluation of biological hazards
from exposure to electromagnetic fields [1],[2] and geophysical
prospecting [3]. Solutions for block models of man have correctly
predicted such phenomena as selective heating of the neck [2] and
head resonance [4], as well as the enhancement of energy deposi-
tion due to the ground and reflectors [5] or by one or more other
bodies [6].

Hyperthermia has shown considerable promise for the ad-
juvant treatment of cancer, but it is essential that the heat be
delivered to the body with a high degree of precision [7]. Since
there are practical limits to the number of temperature probes
used during hyperthermia, it is our belief that quantitative treat-
ment of deep-seated tumors requires the use of accurate electro-
magnetic and thermal modeling for estimation of the dose away
from the few points that are monitored. We intend to use
three-dimensional block models with considerably more cells
than have been used previously to provide the high accuracy and
increased detail required in this application.

It appears to be desirable to use a pulse-function basis [8] with
block models of man since this basis allows the greatest number
of cells for a model having maximum detail for realistic represen-
tation of the human body. Others have suggested that block
model solutions may diverge as the number of cells is increased
[9]-[11]. It is for that reason that the present study has been
made to test the accuracy and stability of block model solutions.
We believe that the examples presented in this paper demonstrate
that it is possible to obtain high accuracy with block.model
solutions if sufficient care is used in their implementation.

II. NUMERICAL EXAMPLES

Dielectric cubes were chosen for all examples since the cubical
shape allows many different discretizations so that various solu-
tions may be compared to test for convergence. In all examples,
the dielectric cube was irradiated by a plane wave with vertical
(Z) polarization propagating in the negative X-direction where
the coordinates are defined in Fig. 1. The plane wave was defined
to have a time-average power density of 1 mW /cm?. A total of
seven solutions were obtained in each example by dividing each
edge of the cube into 2, 4, 6, 8, 10, 12, and 14 equal sections for a
total of 8, 64, 216, 512, 1000, 1728, and 2744 cubical cells,
respectively. Both local and volume average values of the specific
absorption rate (SAR defined as the rate of energy deposition per
unit mass) were determined. Considerable computational effort
was required in the present study. Even though we used three
planes of symmetry with the models to reduce the required size of
the matrices, the computations for each of the block models
having 1728 and 2744 cells required approximately 7 and 19 h,
respectively, of computer time on a VAX-11,/750. With 1728
cells, approximately equal amounts of computer time were spent
in forming and inverting the large matrices. Formation of the
matrices dominated the computer time when smaller numbers of
cells were used.

An exact solution for the dielectric cube is not available, but it
is well known that the electric field is highly heterogeneous near
corners and edges. For this reason, we may expect that many cells
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Coordinates used for irradiation of a dielectric cube by an EM plane
wave.

Fig. 1.

would be needed before accurate values could be obtained near
the corners and edges in even the static (dc) case. It is easily
shown that the average SAR calculated using one cell as a block
model at low frequencies is appropriate for a sphere rather than a -
cube. Then, since at low frequencies the electric field at the
centroid of a dielectric cube is the same as that for a sphere [12],
it would be anticipated that the convergence would be much
faster at locations near the centroid of the cube than near the
corners and edges. The choice of a cubical shape has facilitated
the use of multiple discretizations in the following examples, but
considerably faster convergence would be expected when model-
ing smooth objects such as the human body.

Saline was chosen as the dielectric for the first two examples
since it has a large dielectric constant, similar to that of most
biological tissue, and has been well characterized [13]. The di-
mensions used in these two examples were chosen so as to permit
possible subsequent testing of at least the volume average SAR. It
is unfortunate that other solutions for cubes having larger sizes,
more convenient for experimental testing with field and tempera-
ture probes, appeared to be quite far from convergence. Example
3 was chosen to allow comparison with block model solutions
previously described by others [11].

A. Example 1, 0.5-cm Saline Cube at 400 MHz

The first example was chosen to be a cube of 0.15-N saline at
400 MHz. (¢’=77.1, 0 =140 S/m) with an edge length (L) of
0.5 cm. For comparison, kL = 0.4181, L/A = 0.06269, and L /&
= 0.1403, where k is the magnitude of the complex propagation
constant, A is the wavelength,‘and & is the depth of penetration,
all three being evaluated in the dielectric.

For each of the seven different discretizations used in each
example, there are a number of cubical cells having centroids
located along a major diagonal of the dielectric cube. This
number is equal to the cube root of n, where n is the total
number of cells. In Fig. 2, the values of local SAR for all cells
located ‘along a major diagonal in each discretization for the first
example are given at the locations of their centroids. The extreme
right-hand side of the figure corresponds to a location at a front
corner of the cube (X=Y=Z=0.25 cm), and the extreme
left-hand side corresponds to a rear corner of the cube (X =Y =
Z=—0.25 cm). In order to minimize confusion, numbers have
been used to represent the points rather than using other sym-
bols. Points labeled 1, 2, 3, 4, 5, 6, and 7 correspond to n = 8, 64,
216, 512, 1000, 1728, and 2744 cells, respectively.

We have used point matching [8] to obtain the matrix elements
used in the block model solutions. Since point matching serves to
enforce the electric-field integral equation (EFIE) at the cell
centroids, we will assume that the calculated values of local SAR
are most representative of such points. Others have used electric-
field probes to experimentally test the accuracy of calculations
made using block models, and their results also suggest that the
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Fig. 2. Local SAR values on diagonal of a 0.5-cm saline cube incident EM
plane wave with 1 mW /e at 400 MHz. € = 77.1, 6 =1.40 S/m.
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values obtained in the solutions are most representative of the
cell centroids [14],[15].

Fig. 2 suggests that the values of a local SAR along a main
diagonal converge. fairly rapidly except at locations near the
corners of the cube. For example, the values of local SAR for
n =38, 216, 1000, and 2744 at points halfway between the centroid
and the corners (X=Y=Z=140.125 cm) have ratios of stan-
dard deviation to mean of 0.135 and 0.0727 in the front and
back, respectively. A small sphere having the same dielectric
properties at 400 MHz would have an SAR of 0.004647 W /kG,
which is fairly close to the local SAR near the centroid of the
cube as was expected.

The local values of SAR nearest the corners were the largest
ones obtained for all seven discretizations. Large values were also
obtained near the edges of the cube, especially vertical edges.
Since increasing the number of cells causes some points to be
sampled that are closer to the corners and edges, greater values of
local SAR are obtained at those new locations. By contrast, the
centers of the top and bottom faces were found to be the
locations with minimum SAR, the local values being somewhat
less than half that at the centroid. The reduced value of local
SAR near the centers of the top and bottom faces is supported by
simple considerations based upon boundary conditions. For all
locations in each discretization, the local SAR obtained for a
location in the front half of the cube was somewhat greater than
that of the corresponding location in the back half, showing the
effects of attenuation due to propagation within the lossy dielec-
tric.

The small electrical size used in this example (kL = 0.4181)
suggests that similar heterogeneous patterns of deposition would
be observed for much smaller cubes and even in the limit of zero
electrical size. Other calculations made for smaller cubes and for
lower frequencies have shown that this is the case. The pattern of
deposition in a cube, or presumably in other objects with corners
and edges, is highly heterogeneous even in the dc limit. A
pulse-function basis is not appropriate if the electric field has
appreciable variation within a cell. Two distinctly different phe-
nomena associated with the use of such a basis may be termed
frequency-dependent error (FDE) and frequency-independent er-
ror (FIE) [16]. It has been known for some time that errors result
when such a basis is used unless the cell size is much smaller than
a wavelength [17]. This is an illustration of FDE. The present
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data necessitate emphasising the existence of the additional phe--
nomenon of FIE. In some objects, such as the dielectric cube, the
electric field has sizable variation even at dc so that there is a
minimum number of cells that may be used even for static
solutions.

Values of average SAR calculated for each of the seven discre-
tizations of the dielectric cube by simple averaging of the individ-
ual SAR values are represented by circles in Fig. 3. A graphical
procedure suggested by Mittra and Klein [18] has been used to
assist interpreting the extent of convergence. Since a pulse-func-
tion basis does not account for even linear variation of the
electric field within a cell, it is reasonable that the errors in
calculated values of the electric field should be linear in cell size.
If these errors are small, then the error in average SAR should
also depend linearly upon cell size. Plots with a high degree of
linearity, similar to that in Fig, 3, have been obtained using other
calculations made using smaller cubes and /or lower frequencies.

It is apparent from Fig. 3 that there is substantial error in the
values of volume average SAR in the solutions obtained for the
smaller numbers of cells, even though the values of local SAR for
those solutions appear to be relatively accurate. Most of the
errors in the values of average SAR appear to be due to insuffi-
cient sampling of the regions near corners and edges of the
dielectric cube where the electric field is highly heterogeneous.
Even if the values of local SAR were exact, finite sampling would
cause some error in the values of volume average SAR. We have
found that an extrapolant is useful in such cases [16]. It is
possible to use any two points in Fig. 3 to make an extrapolation
to estimate the solution for an infinite number of cells. The line
segment extending beyond the data in Fig. 3 is an example of
such an extrapolant and was made using the values correspond-
ing to the two largest numbers of cells. There is such a high
degree of linearity that the various two-point extrapolations made
using the values of average SAR for the four largest numbers of
cells (512, 1000, 1728, and 2744) differ from each other by less
than 0.01 percent.

Table I gives the calculated values of errors made by using
two-point extrapolations when one assumes that the extrapola-
tion made using 1728 and 2744 cells is exact. Table II presents
the calculated values of errors for the individual solutions based
on the same assumption. While experimental or other confirma-
tion is needed, the results in the two tables suggest that this



652

TABLE I
PERCENTAGE ERRORS IN EXTRAPOLATED AVERAGE SAR
FOR A 0.5-cM SALINE CUBE

Numbers of Cells Percentage Error
8, 64 -2.82
64, 216 -0.33
216, 512 -0.07
512, 1000 <001
1000, 1728 <001
1728, 2744 (0.0)

Final extrapolated value = 0.008184 W /kG for plane
wave with 1 mW /cm?,

TABLE 11
PERCENTAGE ERRORS IN CALCULATED AVERAGE SAR
FOR A 0.5-CM SALINE CUBE

Total Cells None Interpolant
8 -36.1 —36.1
64 -19.5 -16.3
216 -131 —-10.2
512 -9.38 -73
1000 =79 ~58
1728 -6.5 —48
2744 -56 —-41

extrapolation is a highly useful procedure. For example, the
solutions obtained using 8 and 64 cells may be combined to allow
calculation of the value of volume SAR with greater accuracy
than a single solution obtained using 2744 cells that would have
considerably greater expense.

Interpolants have also been found to improve the accuracy of
values of average SAR by approximating the variation of local
SAR at locations other than the sampled points [19]. Since
interpolants do not change the local values, they are not useful
when the local values themselves have significant error. In the
present problem, we have used only the triquadratic interpolant
described in [19] and not the NEWSUD, since the NEWSUD will
not make the extrapolations required to approximate the higher
local SAR values at corners and edges of the dielectric cube.
Values of volume-average SAR calculated using the interpolant
are represented by triangles in Fig. 3. Note that the interpolant
does not just give larger values but the magnitude of the correc-
tion decreases when large numbers of cells are used as would be
required for convergence to the limit approached without the use
of interpolants. It may be seen in Table II that the interpolant
makes only a modest correction (2 or 3 percent) since it cannot
allow for the full sharpness in the variation of the electric-field
intensity near the corners and edges of the cube. Interpolants
appear to be more helpful when there is less drastic variation,
such as in scatterers having smoother shapes.

B. Example 2, 2.5-cm Saline Cube at 400 MHz

The second example was chosen to be a cube of 0.15-N saline
at 400 MHz, with L=25 cm. For comparison, kL = 2.091,
L/X=0.3135, and L/8 = 0.7016.

Fig. 4 presents the local values of SAR along a major diagonal
for all seven discretizations of example 2 using the same notation
as described for Fig. 2. The local values for 8 and 64 cells are not
significantly different from that of a small dielectric sphere
(0.004647 W /kG), but for larger numbers of cells there is sub-
stantial departure from the solution for a sphere, even near the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 7, JULY 1985

8.a3s

RN dDE AT LI

43
6.7
562 ¢o %4 -
4 £ 56734% 3
b 3’3 2 1

| 1 | ! ] ] | ] |
.75 -0 25 a8 25 Q73
-0.59 8.00 9.58 1.08
COORDINATES. CM

Fig. 4. Local SAR values on diagonal of a 2.5-cm saline cube incident EM
plane wave with 1 mW /cm? at 400 MHz. ¢ = 77.1, 6 =1.40 S/m.

0 eoe
-1 23
-1.00

125

*

x197!
8.1508

8 1250 |-

8.1808 -

..
.

8.875¢ [~

-,
.

ARNBA—DE 0DV MADHMOD

......

8.8500

0.9 8.1 8.2 94

1/CUBE ROOT OF NUMBER OF CELLS

Fig. 5. Average SAR values of a 2.5-cm saline cube incident EM plane wave
with 1 mW /cm? at 400 MHz. ¢’ = 77.1, 6 =1.40 S/m.

centroid. With the 0.5-cm cube, there was fairly rapid conver-
gence at all locations other than near corners and edges, but for
the 2.5-cm cube there is a substantial increase in values of local
SAR in the front half of the cube; this increase becomes evident
only in the solutions using the largest numbers of cells. By
contrast, the values of local SAR near the corners and edges of
the diclectric cube appear to be determined mostly by the shape
of the object since they are quite close to the values in the first
example. As in the first example, the values of local SAR nearest
the corners were the largest ones obtained for all seven discretiza-
tions.

As in the case of example 1, there is considerable FIE due to
insufficient sampling of the rapidly varying fields near corners
and edges of the dielectric cube. Since the local values of SAR are
similar to those of example 1 in such regions, it is assued that the
magnitude of the FIE is comparable to that of example 1. In
example 2, there is a significant amount of FDE as well since
some of the local values are appreciably modified by the use of
larger numbers of cells. It is important to distinguish between
these two sources of error. Limits on the electrical size (kL) of a
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Fig. 6. Local SAR values on diagonal of a 30-cm tissue cube incident EM
plane wave with 1 mW /cm? at 27.12 MHz. ¢’ = 76.0, 0 = 0.42 S/m.

cell have been presented as a condition that is necessary but not
sufficient for convergence [20].

In Fig. 5, values of the volume-average SAR calculated with
and without the interpolant are represented by circles and trian-
gles, respectively, as was done in the first example. The vari»:ion
in Fig. 5 is nonlinear, so it is not possible to estimate the val. of
average SAR by extrapolation as was done with the 0.5-cm cube.
Attempts to use extrapolants of higher order with these data have
also been unsuccessful. We attribute the failure of extrapolation
to the presence of FDE. The extrapolant can correct only for
FIE, that is, for errors due to insufficient sampling, but requires
that the individual samples (values of local SAR) do not have
appreciable error. Interpolants are also of little or no use when
there is appreciable FDE.

C. Example 3, 30-cm Cube of Biological Tissue at 27.12 MHz

The third example was chosen to be a cube of tissue at 27.12
MHz (¢’ = 76.0, 0 = 0.42 S/m) with L =30 cm. The parameters
of this example were chosen to allow comparison with values
previously reported by others [11]. For comparison, kL = 2.897,
L/XA=03664, and L/8=1.758.

Fig. 6 presents the local values of SAR along a major diagonal
for all seven discretizations of example 3 using the same notation
as in the two previous examples. In addition, local values given
by others [11] for a block model using 27 cells are represented on
the same figure by stars. As in the second example, the local
values of SAR calculated using small numbers of cells are not
significantly different from that of a small dielectric sphere
(0.0001704 W /kG). In fact, the value obtained for the central cell
of a 27-cell model in [11} differs from this by only 20 percent.
The values obtained using larger numbers of cells differ greatly
from those for small numbers. In fact, these values suggest that
the volume average SAR for the dielectric cube is at least an
order of magnitude greater than the value for a small dielectric
sphere. The values in Fig. 6 have considerably greater scatter than
was observed in the previous two examples. Even away from the
corners and edges, the local values of SAR in the front half of the
cube appear far from being convergent in the 2744-cell solution.
The FDE is much greater than in the other examples as would be
predicted from the relatively large electrical size (kL = 2.897).

Fig. 7 presents the values of volume-average SAR, as was done
in the other two examples. The nonlinear variation in Fig. 7,
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Fig. 7. Average SAR values on a 30-cm tissue cube incident EM plane wave
with 1 mW /co? at 27.12 MHz. ¢ = 76.0, 0 = 0.42 S/m.

which makes extrapolation unuseful, is attributed to inaccuracy
of the values of local SAR due to FDE,

In [11], the authors presented a 27-cell solution for a dielectric
cube using the parameters of this example. They also gave four
34-cell solutions, each obtained by dividing one of the original 27
cells into 8. Some of the 34-cell solutions differed considerably
from that for 27 cells, and the authors concluded that this showed
a serious deficiency in the block model formulation {11]. It
should be clear from Figs. 6 and 7 that the values in the 27-cell
solution are far from being convergent. We are not surprised that
they found little change when they subdivided the cell at the
centroid of the cube since that location appears to have relatively
little correction when 64 cells are used. It is not surprising that
subdividing a corner cell caused a substantial increase in the local
SAR values. Indeed, all their results with the cube may be
attributed to corrections for a solution that is very far from
convergence.

III. CONCLUSIONS

It appears that the major source of error in all three examples
is the approximation made when assuming that the electric field
is a constant within each cell, ie., the use of a pulse-function
basis. We do not believe that significant errors have been intro-
duced by the procedures we used in evaluating the matrix ele-
ments since the accuracy of the expressions has been verified by
comparison with numerical quadratures. LU decomposition was
chosen rather than semi-iterative [9] or other procedures in order
to minimize any errors due to matrix inversion for three exam-
ples. We do not believe that roundoff errors are significant,
despite the large size of some of the matrices used in the present
study, since the matrices are diagonally dominant and extremely
well conditioned. It is common to use double-precision in the
accumulation of scalar products in LU decomposition, as well as
forward- and back-substitution in order to limit the buildup of
roundoff error. In the present work, we have eliminated the use
of double-precision at these steps in several tests using 1728 cells
and found that the resulting changes in values of the volume-
average SAR were less than 3-parts-per-million.

The phenomena of frequency-independent error (FIE) and
frequency-dependent error (FDE) have been illustrated by the
examples in this paper. In a cube, or presumably in other objects
having corners and edges, the electric field has sizable variation
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even in the dc limit so that a large number of cells may be
required to determine the average SAR. Since limits which have
been specified for the electrical size (kL) of a cell with block
models pertain only to FDE [20], such conditions are necessary
but not sufficient for convergence.

In calculations made for objects having corners and edges, the
volume-average SAR may converge more slowly than values of
local SAR at locations distant from the corners and edges. An
extrapolant may be used to make substantial corrections for FIE
in order to estimate the average SAR with such objects. Extrapo-
lation fails when there is appreciable FDE since the procedure
requires that the individual samples of local SAR do not have
appreciable error. Interpolants have also been used to make
corrections to values of average SAR; but the extrapolant makes
a substantially larger correction, so it is the procedure of choice
when solutions are available having two or more discretizations.
Only values of average SAR obtained without interpolation should
be used with the extrapolant since such values have errors which
vary linearly with cell size.

We consider it to be essential that the array of cubes used for a
block model be arranged for a best-fit of the object to be
modeled. Since the electric field has sizable variation near corners
and edges, it is necessary that such shapes not be emphasized
when modeling a smooth object such as the human body. Increas-
ing the number of cells in a model by subdividing one or more of
the cells and retaining the same outer boundary is one way of
creating such an emphasis. It appears that when others have used
such simple subdivisions with block models of man their results
departed from solutions for man and instead approached solu-
tions for models having unwanted corners and edges [9}-[11].

It is anticipated that block model solutions for objects having
smooth shapes, such as models of man, will have considerably
less FIE than occurs with the dielectric cube so that convergence
will be more rapid than is seen in the present examples. In
yet-unpublished work, we have found that the values of volume-
average SAR for block models of a man-sized prolate spheroid at
100 and 225 MHz are within 6 percent of those calculated for the
prolate spheroid by other methods. Comparisons of the local
values of SAR in both prolate spheroids and spheres with block
model solutions for those objects are in progress.
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Abstract —A rigorous field theory design of a class of rectangular
wavegnide screen filters is presented which achieves improved attenuation
in the upper stopband. The method of field expansion into suitable
eigenmodes used considers the effects of the finite rectangular E-plane
grid thickness and the mutual higher order mode interaction of the single
screens. Calculated results up to 55 GHz show that the peak attenuation in
the upper stopband for a Ka-band (26-40-GHz) two-resonators filter
example with a midband frequency of f, =37 GHz is about 70 dB,
whereas its planar circuit single-metal-insert counterpart reaches only
about 34 dB. A Ku-band (12-18-GHz) filter prototype with three metal-
etched screens yields a measured passband insertion loss of 0.8 dB at about
fo =17 GHz and a measured attenuation in upper stopband of about 50 dB
up to 25 GHz.

I. INTRODUCTION

Metal inserts placed in the E-plane of rectangular waveguides
achieve low-cost low-loss filter designs [1], [2]. Especially for
filters with midband frequencies in the near of the higher band
end of the corresponding waveguide housing, the attenuation in
the upper stopband attainable with single inserts, however, is
often too low [3] for many applications. This is due to unwanted
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