
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. M’IT-33, NO. 7, JULY 1985 649

can be identified as the contribution of the n th aperture to the

field at (p, +). We cart say that the array of N horn apertures is

focused to the point (p, I#J)when the phase of each contribution

E,, ~ is identical. An equivalent statement is that

m-—co

The” choice of the amplitude factor An is still open. The coeffi-

cient ~~ is defined by (18) and involves the electrical properties

of the target and the concentric buffer region. In the case where

the latter is absent or vanishing small (i.e., b ~ a), we see fiat

L = [L(yla)]-’. (31)

The other key coefficient in (30) is V~, which depends on the

common field distribution in a given aperture. Assuming that the

horns are excited only by a TEM (transverse electromagnetic)

mode, it is reasonable to assume a cosinusoidal field distribution

at the aperture which vanishes at the side walls. l%us, we may

adopt the form
.

()Az(l$) =Eo. cos y’ (32)

for the range – ~ < ~ <~. Then, using (27), we see that

= bEO~/N for m = N/2. (33)

All quantities on the right-hand side of (30) are now specified,

and the phase factors 8. may be calculated for any desired point

(P, 4). We are still free to select the amplitude factors A. if
additional constraints are made.

VI. FINAL REMARKS

There are a number of generalizations and extensions of the

present model that we might mention. The case where the target

(defined by p < a in Fig. 1) is concentrically layered presents no

difficulty in analysis. Here, we can use the present formulation

provided Yl, ~ (the surface admittance) of mode of order m at

P = a is replaced by the appropriate form for the equivalent
nonuniform transmission line [8]. Another extension is to allow

explicity for the limited axial extent (in the z-direction) of the

apertures and to include the axial variation of the fields [8], [10].

Now we must allow for the intrinsic hybrid nature of the fields

because the TE (transverse electric) and TM (transverse mag-

netic) modes are coupled [8]. At the same time, both the axial and

the azimuthal (i.e., z and r), respectively) variations of the

aperture fields can be accounted for. In a further extension, we

can consider the influence of the finite length of the cylindrical

target by imposing a zero axial current flow condition at the

bounding planes (top and bottom) [11].

There is another interesting concept that we might also men-

tion in the present context. In order to “focus” the array, we

adopted a procedure whereby the fields of the individual aper-

tures were selected to have a phase such that all contributions at

the internal field point were additive. Now we could have turned

the problem around and started with a hypothetic electric line

source at the internal point and deduce the corresponding re-

ceived signal in each aperture. This would lead to an alternative

but equivalent procedure to deduce the phase angles S. needed to

design the focused aperture. This latter approach could be adapted

to more complicated target geometries where purely numerical

methods would be required to solve the electromagnetic problem.

However, in the interim, it would seem prudent to restrict atten-

tion to analytically viable models if insight and understanding are

desired. We are currently undertaking such a study and the

results will be reported in Part II.
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Convergence of Local and Average Values in

Three-Dimensional Moment-Method Solutions

MARK J. HA(3MANN, MSMRER, IEEE, AND RONALD L. LEVIN

Abstract —Block models usiug 8, 64, 216, 512, 1000, 172$3,and 2744
cublcaf cells were used to evafuate the load and average specific ahsorption
rate (SAR) for a dielectric cube irradiated by an EM plaue wave. AU seven
models were used in examples for 0.5.cm and 2.5-cm saline cubes at 400
MI-Ix and a 30-cm cube of biological tissue at 27.12 MHz. In each

example, the solutions using 8 or 64 cells were similar to that for a sphere
rather than a cube. Many cells are needed to approximate the sharp
variation of the electric field near corners and edges of a dielectric cube.

The heterogeneity of the electric field in an object having comers and
edges causes a frequency-independent error (HE) in addition to the more
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generafly observed frequency-dependent error (FDE) associated with the
electrical size of the object. FIE causes the average SAR to converge less

rapidly than local vafues of SAR at locations distant from the comers and

edges. An extrapolant is described that corrects for FDE but not FIE in
order to estimate the volume average SAR.

I. INTRODUCTION

Numerical solutions obtained using block models have had

many applications including the evaluation of biological hazards

from exposure to electromagnetic fields [1], [2] and geophysical

prospecting [3]. Solutions for block models of man have correctly

predicted such phenomena as selective heating of the neck [2] and

head resonance [4], as well as the enhancement of energy deposi-

tion due to the ground and reflectors [5] or by one or more other

bodies [6].

Hyperthermia has shown considerable promise for the ad-

juvant treatment of cancer, but it is essential that the heat be

delivered to the body with a high degree of precision [7]. Since

there are practical limits to the number of temperature probes

used during hyperthermia, it is our belief that quantitative treat-

ment of deep-seated tumors requires the use of accurate electro-

magnetic and thermal modeling for estimation of the dose away

from the few points that are monitored. We intend to use

three-dimensional block models with considerably more cells

than have been used previously to provide the high accuracy and

increased detail required in this application.

It appears to be desirable to use a pulse-function basis [8] with

block models of man since this basis allows the greatest number

of cells for a model having maximum detail for realistic represen-

tation of the human body. Others have suggested that block

model solutions may diverge as the number of cells is increased

[9]-[11]. It is for that reason that the present study has been

made to test the accuracy and stability of block model solutions.

We believe that the examples presented in this paper demonstrate

that it is possible to obtain high accuracy with block. model

solutions if sufficient care is used in their implementation.

II. NUMERICAL Exmmms

Dielectric cubes were chosen for all examples since the cubical

shape allows many different discretizations so that various solu-

tions may be compared to test for convergence. In all examples,

the dielectric cube was irradiated by a plane wave with vertical

(Z) polarization propagating in the negative X-direction where

the coordinates are defined in Fig. 1. The plane wave was defined

to have a time-average power density of 1 mW/cm2. A total of

seven solutions were obtained in each example by dividing each

edge of the cube into 2, 4, 6, 8, 10, 12, and 14 equaf sections for a

total of 8, 64, 216, 512, 1000, 1728, and 2744 cubical cells,

respectively. Both locaf and volume average values of the specific

absorption rate (SAR defined as the rate of energy deposition per

unit mass) were determined. Considerable computational effort

was required in the present study. Even though we used three

planes of symmetry with the models to reduce the required size of

the matrices, the computations for each of the block models

having 1728 and 2744 cells required approximately 7 and 19 h,

respectively, of computer time on a VAX-11/750. With 1728

cells, approximately equal amounts of computer time were spent

in forming and inverting the large matrices. Formation of tie

matrices dominated the computer time when smaller numbers of

cells were used.

An exact solution for the dielectric cube is not available, but it

is well known that the electric field is highly heterogeneous near

comers and edges. For this reason, we may expect that many cells

z
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Fig. 1. Coordinates used for irradiation of a dielectric cube by an EM plane

wave.

would be needed before accurate values could be obtained near

the comers and edges in even the static (de) case. It is easily

shown that the average SAR calculated using one cell as a block

model at low frequencies is appropriate for a sphere rather than a

cube. Then, since at low frequencies the electric field at the

centroid of a dielectric cube is the same as that for a sphere [12],

it would be anticipated that the convergence would be much

faster at locations near the centroid of the cube than near the

comers and edges. The choice of a cubicrd shape has facilitated

the use of multiple discretizations in the following examples, but

considerably faster convergence would be expected when model-

ing smooth objects such as the human body.

Saline was chosen as the dielectric for the first two examples

since it has a large dielectric constant, similar to that of most

biological tissue, and has been well characterized [13]. The di-

mensions used in these two examples were chosen so as to permit

possible subsequent testing of at least the volume average SAR. It

is unfortunate that other solutions for cubes having larger sizes,

more convenient for experimental testing with field and tempera-

ture probes, appeared to be quite far from convergence. Example

3 was chosen to allow comparison with block model solutions

previously described by others [11].

A. Example 1, 0.5-cm Saline Cube at 400 MHz

The first example was chosen to be a cube of 0.15-N saline at

400 MHz. (c’ = 77.1, u =1.40 S/m) with an edge length (L) of

0.5 cm. For comparison, kL = 0.4181, L/A= 0.06269, and L/8

= 0.1403, where k is the magnitude of the complex propagation

constant, A is the wavelength, and 8 is the depth of penetration,

all three being evaluated in the dielectric.

For each of the seven different discretizations used in each

example, there are a number of cubical cells having centroids

located along a major diagonal of the dielectric cube. This

number is equal to the cube root of n, where n is the total

number of cells. In Fig. 2, the values of local SAR for all cells

located along a major diagonal in each discretization for the first

example are given at the locations of their centroids. The extreme

fi~t-h~d Side of the figure corresponds to a location at a front
comer of the cube (X= Y = Z = 0.25 cm), and the extreme

left-hand side corresponds to a rear comer of the cube (X= Y =

Z = – 0.25 cm). In order to minimize confusion, numbers have

been used to represent the points rather than using other sym-

bols. Points labeled 1,2, 3,4, 5, 6, and 7 correspond to n =8, 64,

216, 512, 1000, 1728, and 2744 cells, respectively.

We have used point matching [8] to obtain the matrix elements

used in the block model solutions. Since point matching serves to

enforce the electric-field integral equation (EFIE) at the cell

centroids, we will assume that the calculated values of local SAR

are most representative of such points. Others have used electric-

field probes to experimentally test the accuracy of calculations

made using block models, and their results also suggest that the
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Fig. 2. Local SAR values on diagonal of a 0.5-cm saline cube incident EM
plane wave with 1 mW/cm2 at 400 MHz. c’= 77.1, . = 1.40 S/m.

values obtained in the solutions are most representative of the

cell centroids [14], [15].

Fig. 2 suggests that the values of a local SAR along a main

diagonal converge fairly rapidly except at locations near the

corners of the cube. For example, the values of local SAR for

n = 8, 216, 1000, and 2744 at points halfway between the centroid

and the comers (X= Y = Z = ~ 0.125 cm) have ratios of stan-

dard deviation to mean of 0.135 and 0.0727 in the front and

back, respectively. A small sphere having the same dielectric

properties at 400 MHz would have an SAR of 0.004647 W/kG,

which is fairly close to the local SAR near the centroid of the

cube as was expected.

The local values of SAR nearest the comers were the largest

ones obtained for all seven discretizations. Large values were also

obtained near the edges of the cube, especially vertical edges.

Since increasing the number of cells causes some points to be

sampled that are closer to the comers and edges, greater values of

local SAR are obtained at those new locations. By contrast, the

centers of the top and bottom faces were found to be the

locations with minimum SAR, the local values being somewhat

less than half that at the centroid. The reduced value of local

SAR near the centers of the top and bottom faces is supported by

simple considerations based upon boundary conditions. For all

locations in each discretization, the local SAR obtained for a

location in the front half of the cube was somewhat greater than

that of the corresponding location in the back half, showing the

effects of attenuation due to propagation within the lossy dielec-

tric.

The small electrical size used in this example (M. = 0.4181)

suggests that similar heterogeneous patterns of deposition would

be observed for much smaller cubes and even in the limit of zero

electrical size. Other calculations made for smaller cubes and for

lower frequencies have shown that this is the case. The pattern of

deposition in a cube, or presumably in other objects with corners

and edges, is highly heterogeneous even in the dc limit. A

pulse-function basis is not appropriate if the electric field has

appreciable variation within a cell. Two distinctly different phe-

nomena associated with the use of such a basis may be termed

frequency-dependent error (FDE) and frequency-independent er-

ror (FIE) [16]. It has been known for some time that errors result

when such a basis is used unless the cell size is much smaller than

a wavelength [17]. This is an illustration of FDE. The present

0.50
00 0.1 02 83 0.4 0.!5

i@JBE ROOT OF NUMBER OF CELLS

Fig. 3. Average SAR vatues of a 0.5-cm saline cube incident EM plane wave
with 1 mW/crr# at 400 MHz. c’= 77.1, a = 1.40 S/m.

data necessitate emphasizing the existence of the additional phe-

nomenon of FIE. In some objects, such as the dielectric cube, tJhe
electric field has sizable variation even at dc so that there is a

minimum number of cells that may be used even for static

solutions.

Values of average SAR calculated for each of the seven discre-

tizations of the dielectric cube by simple averaging of the individ-

ual SAR values are represented by circles in Fig. 3. A graphical

procedure suggested by Mittra and Klein [18] has been used to

assist interpret ing the extent of convergence. Since a pulse- furic-

tion basis does not aeeount for even linear variation of the

electric field within a cell, it is reasonable that the errors in

calculated values of the electric field should be linear in cell size.

If these errors are small, then the error in average SAR should

also depend linearly upon cell size, Plots with a high degree of

linearity, similar to that in Fig. 3, have been obtained using other

calculations made using smaller cubes and/or lower frequencies,

It is apparent from Fig. 3 that there is substantial error in the

values of volume average SAR in the solutions obtained for the

smaller numbers of cells, even though the values of local SAR for

those solutions appear to be relatively accurate. Most of the

errors in the values of average SAR appear to be due to insuffi-

cient sampling of the regions near comers and edges of the

dielectric cube where the electric field is highly heterogeneous.

Even if the values of local SAR were exact, finite sampling would

cause some error in the values of volume average SAR. We have

found that an extrapolant is useful in such cases [16]. It is

possible to use any two points in Fig. 3 to make an extrapolation

to estimate the solution for an infinite number of cells. The line

segment extending beyond the data in Fig. 3 is an example of

such an extrapolant and was made using the values correspond-

ing to the two largest numbers of cells. There is such a high

degree of linearity that the various two-point extrapolations made

using the values of average SAR for the four largest numbers of

cells (512, 1000, 1728, and 2744) differ from each other by less

than 0.01 percent.

Table I gives the calculated values of errors made by using

two-point extrapolations when one assumes that the extrapola-

tion made using 1728 and 2744 cells is exact. Table II presents

the calculated values of errors for the individual solutions based

on the same assumption. While experimental or other confirma-

tion is needed, the results in the two tables suggest that thk
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TABLE I

PERCENTAGE ERRORS IN EXTRAPOLATED AVERAGE SAR

FOR A O.5-cM SALINE CUSE

Numbers of Cells Percentage Error

8, 64 – 2.82

64, 216 –0.33

216, 512 – 0.07

512,1000 <0.01

1000,1728 <0.01

1728,2744 (0.0)

Finsd extrapolated value= 0.008184 W/kG for plane
wave with 1 mW/cm2.

TABLE II

PERCENTAGE ERRORS IN CALCULATED AVERAGE SAR

FOR A O.5-cM SALINE CUBE

Total Cells None Interpolant

8 – 36.1 – 36.1

64 – 19.5 – 16.3

216 – 13.1 – 10.2

512 – 9.8 – 7.3

1000 – 7.9 – 5.8

1728 – 6.5 –4.8

2744 – 5.6 –4.1

extrapolation is a highly useful procedure. For example, the

solutions obtained using 8 and 64 cells maybe combined to allow

calculation of the value of volume SAR with greater accuracy

than a single solution obtained using 2’744 cells that would have

considerably greater expense.

Interpolants have also been found to improve the accuracy of

values of average SAR by approximating the variation of local

SAR at locations other than the sampled points [19], Since

interpolants do not change the local values, they are not useful

when the local values themselves have significant error. In the

present problem, we have used only the triquadratic interpolant

described in [19] and not the NEWSUD, since the NEWSUD will

not make the extrapolations required to approximate the higher

local SAR values at corners and edges of the dielectric cube.

Values of volume-average SAR calculated using the interpokmt

are represented by triangles in Fig. 3. Note that the interpolant

does not just give larger values but the magnitude of the correc-

tion decreases when large numbers of cells are used as would be

required for convergence to the limit approached without the use

of interpolants. It may be seen in Table II that the interpokmt

makes only a modest correction (2 or 3 percent) since it cannot

allow for the full sharpness in the variation of the electric-field

intensity near the corners and edges of the cube. Interpolants

appear to be more helpful when there is less drastic variation,

such as in scatterers having smoother shapes.

B. Example 2, 2.5- cm Saline Cube at 400 MHz

The second example was chosen to be a cube of 0.15-N saline

at 400 MHz, with L = 2.5 cm. For comparison, kL = 2.091,

L/A = 0.3135, and L/8= 0.7016.

Fig. 4 presents the local values of SAR along a major diagonal

for all seven discretizations of example 2 using the same notation

as described for Fig. 2. The local values for 8 and 64 cells are not

significantly different from that of a small dielectric sphere

(0.004647 W/kG), but for larger numbers of cells there is sub-

stantial departure from the solution for a sphere, even near the
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Fi~. 4. Locat SAR values on dia~onat of a 2.5-cm saline cube incident EM
plane wave with 1 mW/cmz ;t 400 MHz. d = 77.1, u = 1.40 S/m.
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Fig. 5. Average SAR vatues of a 2.5-cm saline cube incident EM plane wave
with 1 mW/cm2 at 400 MHz. # = 77.1, u = 1.40 S/m.

centroid. With the 0.5-cm cube, there was fairly rapid conver-

gence at all locations other than near corners and edges, but for

the 2.5-cm cube there is a substantial increase in values of local

SAR in the front half of the cube; this increase becomes evident

only in the solutions using the largest numbers of cells. By

contrast, the values of local SAR near the corners and edges of

the dielectric cube appear to be determined mostly by the shape

of the object since they are quite close to the values in the first

example. As in the first example, the values of local SAR nearest

the corners were the largest ones obtained for all seven discretiza-

tions.

As in the case of example 1, there is considerable FIE due to

insufficient sampling of the rapidly varying fields near corners

and edges of the dielectric cube. Since the local vahes of SAR are

similar to those of example 1 in such regions, it is assued that the

magnitude of the FIE is comparable to that of example 1. In

example 2, there is a significant amount of FDE as well since

some of the local vahtes are appreciably modified by the use of

larger numbers of cells. It is important to distinguish between

these two sources of error. Limits on the electrical size (id,) of a
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6. Locsl SAR values on diagonal of a 30-cm tissue cube incident EM
plane wave with 1 mW/cm2 at 27.12 MHz. c’= 76.0, u = 0.42 S/m.

cell have been presented as a condition that is necessary but not

sufficient for convergence [20].

In Fig. 5, values of the volume-average SAR calculated with

and without the interpolant are represented by circles and trian-

gles, respectively, as was done in the first example. The vari::: ion

in Fig. 5 is nonlinear, so it is not possible to estimate the vak of

average SAR by extrapolation as was done with the 0.5-cm cube.

Attempts to use extrapolants of higher order with these data have

also been unsuccessful. We attribute the failure of extrapolation

to the presence of FDE. The extrapolant can correct only for

FIE, that is, for errors due to insufficient sampling, but requires

that the individual samples (values of local SAR) do not have

appreciable error. Interpolants are also of little or no use when

there is appreciable FDE.

C. Example 3, 30-cm Cube of Biological Tissue at 27.12 MHz

The third example was chosen to be a cube of tissue at 27.12

MHz (d= 76.0, u = 0.42 S/m) with L =30 cm. The parameters

of this example were chosen to allow comparison with values

previously reported by others [11]. For comparison, kL = 2.897,

L/A = 0.3664, and L/8= 1.758.

Fig. 6 presents the local values of SAR along a major diagonal

for all seven discretizations of example 3 using the same notation

as in the two previous examples. In addition, local values given

by others [11] for a block model using 27 cells are represented on

the same figure by stars. As in the second example, the local

values of SAR calculated using small numbers of cells are not

significantly different from that of a small dielectric sphere

(0.0001704 W/kG). In fact, the value obtained for the central cell

of a 27-cell model in [11] differs from this by only 20 percent.

The values obtained using huger numbers of cells differ greatly

from those for small numbers. In fact, these values suggest that

the volume average SAR for the dielectric cube is at least an

order of magnitude greater than the value for a small dielectric

sphere. The values in Fig. 6 have considerably greater scatter than

wax observed in the previous two examples. Even away from the

comers and edges, the local values of SAR in the front half of the

cube appear far from being convergent in the 2744-cell solution.

The FDE is much greater than in the other examples as would be

predicted from the relatively large electrical size ( kL = 2.897).

Fig. 7 presents the values of volume-average SAR, as was done

in the other two examples. The nonlinear variation in Fig. 7,

1.0
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0.0 0.1 02 ‘a.3 0.4 0,3

lzCIJBE RIJI)T OF 141JMBEROF CELLS

Fig. 7. Average SAR values on a 30-cm tissue cube incident EM plane wave
with 1 mW/cn# at 27.12 MI-Iz. d = 76.0, u = 0.42 S/m.

which makes extrapolation unuseful, is attributed to inaccuracy

of the values of local SAR due to FDE.

In [11], the authors presented a 27-cell solution for a dielectric

cube using the parameters of this example. They also gave four

34-cell solutions, each obtained by dividing one of the original 27

cells into 8. Some of the 34-cell solutions differed considerably

from that for 27 cells, and the authors concluded that this showed

a serious deficiency in the block model formulation [11]. It

should be clear from Figs. 6 and 7 that the values in the 27-ccII

solution are far from being convergent. We are not surprised that

they found little change when they subdivided the cell at the

centroid of the cube since that location appears to have relatively

little correction when 64 cells are used. It is not surprising that

subdividing a corner cell caused a substantial increase in the local

SAR values, Indeed, all their results with the cube may be

attributed to corrections for a solution that is very far from

convergence.

III. CONCLUSIONS

It appears that the major source of error in all three examples

is the approximation made when assuming that the electric fiellcl

is a constant within each cell, i.e., the use of a pulse-function

basis. We do not believe that significant errors have been intro-

duced by the procedures we used in evaluating the matrix ele-

ments since the accuracy of the expressions has been verified by

comparison with numerical quadrature. LU decomposition was

chosen rather than semi-iterative [9] or other procedures in order

to minimize any errors due to matrix inversion for thiee exam-

ples. We do not believe that roundoff errors are significant,

despite the large size of some of the matrices used in the present

study, since the matrices are diagonally dominant and extremely

well conditioned. It is common to use double-precision in the

accumulation of scalar products in LU decomposition, as well as

forward- and back-substitution in order to limit the buildup of

roundoff error. In the present work, we have eliminated the use

of double-precision at these steps in several tests using 1728 cells

and found that the resulting changes in values of the volume-

average SAR were less than 3-parts-per-million.

The phenomena of frequency-independent error (FIE) and

freque~ey-dependent error (FDE) have been illustrated by the

examples in this paper. In a cube, or presumably in other objects

having comers and edges, the electric field has sizable variation
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even in the dc limit so that a large number of cells may be

required to determine the average SAR. Since limits which have

been specified for the electrical size ( kL) of a cell with block

models pertain only to FDE [20], such conditions are neceswy

but not sufficient for convergence.

In calculations made for objects having comers and edges, the

volume-average SAR may converge more slowly than values of

local SAR at locations distant from the comers and edges. An

extrapolant may be used to make substantial corrections for HE

in order to estimate the average SAR with such objects. Extrapol-

ation fails when there is appreciable FDE since the procedure

requires that the individual samples of local SAR do not hlave

appreciable error. Interpolants have also been used to mlake

corrections to values of average SAR; but the extrapolarrt makes

a substantially larger correction, so it is the procedure of choice

when solutions are available having two or more discretizations.

Only values of average SAR obtained without interpolation should

be used with the extrapolant since such values have errors which

vary linearly with cell size.

We consider it to be essential that the array of cubes used for a

block model be arranged for a best-fit of the object to be

modeled. Since the electric field has sizable variation near comers

and edges, it is necessary that such shapes not be emphasized

when modeling a smooth object such as the human body. Increas-

ing the number of cells in a model by subdividing one or more of

the cells and retaining the same outer boundary is one way of

creating such an emphasis. It appears that when others have used

such simple subdivisions with block models of man their results

departed from solutions for man and instead approached solut-

ions for models having unwanted comers and edges [9]–[11].

It is anticipated that block model solutions for objects having

smooth shapes, such as models of man, will have considerably

less FIE than occurs with the dielectric cube so that convergence

will be more rapid than is seen in the present examples. In

yet-unpublished work, we have found that the values of volume-

average SAR for block models of a man-sized prolate spheroid at

100 and 225 MHz are within 6 percent of those calculated for the
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eigenmodes used considers the effects of the finite rectangular E-plane
grid thickness and the mutuaf bigher order mode interaction of the single

screens. Calculated results up to 55 GHz show that the peak attenuation in

the upper stopband for a Ku-band (26-40-GHz) two-resonators filter
example with a roidband frequency of ~0= 37 GHz is about 70 dB,

whereas its planar circuit single-metal-insert counterpart reaches only
about 34 dB. A Ku-band (12- 18-GHz) filter prototype with three metal-
etched screens yields a measured passband insertion loss of 0.8 dB at about

~.= 17 GHz and a measured attenuation in upper stopband of about 50 dB
up to 25 GHz.

I. INTRODUCTION

Metal inserts placed in the E-plane of rectangular waveguides

achieve low-cost low-loss filter designs [1], [2]. Especially for

filters with midband frequencies in the near of the higher band

end of the corresponding waveguide housing, the attenuation in

the upper stopband attainable with single inserts, however, is

often too low [3] for many applications. This is due to unwanted
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